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The new dynamical theory of space is further confirmed by showing that the effective
“black hole” masses MBH in 19 spherical star systems, from globular clusters to
galaxies, with masses M , satisfy the prediction that MBH =

α
2
M , where α is the

fine structure constant. As well the necessary and unique generalisations of the
Schrödinger and Dirac equations permit the first derivation of gravity from a deeper
theory, showing that gravity is a quantum effect of quantum matter interacting with
the dynamical space. As well the necessary generalisation of Maxwell’s equations
displays the observed light bending effects. Finally it is shown from the generalised
Dirac equation where the spacetime mathematical formalism, and the accompanying
geodesic prescription for matter trajectories, comes from. The new theory of space is
non-local and we see many parallels between this and quantum theory, in addition to
the fine structure constant manifesting in both, so supporting the argument that space is
a quantum foam system, as implied by the deeper information-theoretic theory known
as Process Physics. The spatial dynamics also provides an explanation for the “dark
matter” effect and as well the non-locality of the dynamics provides a mechanism
for generating the uniformity of the universe, so explaining the cosmological horizon
problem.

1 Introduction

Physics has had two distinct approaches to space. Newton
asserted that space existed, but was non-dynamical and un-
observable. Einstein, in contrast, asserted that space was
merely an illusion, a perspective effect in that it is four-
dimensional spacetime which is real and dynamical, and that
the foliation into space and a geometrical model of time was
observer dependent; there was no observer independent spa-
ce. Hence also according to Einstein space was necessarily
unobservable. However both approaches have been challeng-
ed by the recent discovery that space had been detected again
and again over more than 100 years [1–11], and that the
dynamics of space is now established∗. The key discovery [2]
in 2002 was that the speed of light is anisotropic — that it is c
only with respect to space itself, and that the solar system has
a large speed of some 400 km/s relative to that space, which
causes the observed anisotropy. This discovery changes all of
physics†. The problem had been that from the very beginning
the various gas-mode Michelson interferometer experiments
to detect this anisotropy had been incorrectly calibrated‡,
and that the small fringe shifts actually seen corresponded
to this high speed. As well it has been incorrectly assumed
that the success of the Special Relativity formalism requires

∗At least in the limit of zero vorticity.
†Special Relativity does not require that the speed of light be isotropic,

as is usually incorrectly assumed.
‡Special relativity effects and the presence of gas in the light paths

both play critical roles in determining the calibration. In vacuum mode the
interferometer is completely insensitive to absolute motion effects, i. e. to
the anisotropy of light.

that the speed of light be isotropic, that an actual 3-space
be unobservable. Now that space is known to exist it must
presumably also have a dynamics, and this dynamics has
been discovered and tested by explaining various phenomena
such as (i) gravity, (ii) the “dark matter” effect, (iii) the bore
hole g anomalies, (iv) novel black holes, (v) light bending
and gravitational lensing in general, and so on. Because spa-
ce has been overlooked in physics as a dynamical aspect
of reality all of the fundamental equations of physics, such
as Maxwell’s equations, the Schrödinger equation, the Dirac
equation and so on, all lacked the notion that the phenomena
described by these equations were excitations, of various
kinds, of the dynamical space itself. The generalisation of
the Schrödinger equation [12] then gave the first derivation
and explanation for gravity: it is a quantum effect in which
the wave functions are refracted by the inhomogeneities and
time variations of the structured space. However the most
striking discovery is that the internal dynamics of space is
determined by the fine structure constant [13–16]. In this
paper we report further observational evidence for this dis-
covery by using a more extensive collection of “black hole”
masses in spherical galaxies and globular clusters§. As well
we give a more insightful explanation for the dynamics of
space. We also show how this quantum-theoretic explanation
for gravity leads to a derivation of the spacetime construct
where, we emphasise, this is purely a mathematical construct
and not an aspect of reality. This is important as it explains
why the spacetime dynamics appeared to be successful, at

§The generic term “black hole” is used here to refer to the presence of
a compact closed event horizon enclosing a spatial in-flow singularity.
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least in those cases where the “dark matter” effect was not
apparent. However in general the metric tensor of this indu-
ced spacetime does not satisfy the General Relativity (GR)
equations.

2 Dynamics of space

At a deeper level an information-theoretic approach to mo-
delling reality (Process Physics [1]) leads to an emergent
structured “space” which is 3-dimensional and dynamic, but
where the 3-dimensionality is only approximate, in that if
we ignore non-trivial topological aspects of space, then it
may be embedded in a 3-dimensional geometrical manifold.
Here the space is a real existent discrete but fractal network
of relationships or connectivities, but the embedding space
is purely a mathematical way of characterising the 3-dimen-
sionality of the network. This is illustrated in Fig. 1. This
is not an ether model; that notion involved a duality in that
both the ether and the space in which it was embedded were
both real. Now the key point is that how we embed the
network in the embedding space is very arbitrary: we could
equally well rotate the embedding or use an embedding that
has the network translating. These general requirements then
dictate the minimal dynamics for the actual network, at a
phenomenological level. To see this we assume at a coarse
grained level that the dynamical patterns within the network
may be described by a velocity field v (r, t), where r is
the location of a small region in the network according to
some arbitrary embedding. For simplicity we assume here
that the global topology of the network is not significant for
the local dynamics, and so we embed in an E3, although a
generalisation to an embedding in S3 is straightforward. The
minimal dynamics then follows from the above by writing
down the lowest order zero-rank tensors, with dimension
1/t2, that are invariant under translation and rotation, giving∗

∇ ∙

(
∂v

∂t
+ (v ∙ ∇)v

)

+

+
α

8
(trD)2 +

β

8
tr (D2) = −4πGρ ,

(1)

where ρ is the effective matter density, and where

Dij =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)

. (2)

In Process Physics quantum matter are topological de-
fects in the network, but here it is sufficient to give a simple
description in terms of an effective density, but which can
also model the “dark energy” effect and electromagnetic
energy effects, which will be discussed elsewhere. We see

∗Note that then, on dimensional grounds, the spatial dynamics cannot
involve the speed of light c, except on the RHS where relativistic effects
come into play if the speed of matter relative to the local space becomes
large, see [1]. This has significant implications for the nature and speed of
so-called “gravitational” waves.

Fig. 1: This is an iconic
graphical representation of
how a dynamical network has
its inherent approximate 3-
dimensionality displayed by
an embedding in a mathem-
atical space such as an E3 or
an S3. This space is not real;
it is purely a mathematical
artifact. Nevertheless this em-
beddability helps determine
the minimal dynamics for the
network, as in (1). At a deeper
level the network is a quan-

tum foam system [1]. The dynamical space is not an ether model,
as the embedding space does not exist.

that there are only four possible terms, and so we need at
most three possible constants to describe the dynamics of
space: G, α and β. G will turn out to be Newton’s gravi-
tational constant, and describes the rate of non-conservative
flow of space into matter. To determine the values of α and
β we must, at this stage, turn to experimental data.

However most experimental data involving the dynamics
of space is observed by detecting the so-called gravitational
acceleration of matter, although increasingly light bending is
giving new information. Now the acceleration a of the dyn-
amical patterns in space is given by the Euler or convective
expression

a(r, t) ≡ lim
Δt→0

v (r+v (r, t)Δt, t+Δt)−v (r, t)
Δt

=

=
∂v

∂t
+ (v ∙ ∇)v

(3)

and this appears in one of the terms in (1). As shown in
[12] and discussed later herein the acceleration g of quantum
matter is identical to this acceleration, apart from vorticity
and relativistic effects, and so the gravitational acceleration
of matter is also given by (3).

Outside of a spherically symmetric distribution of matter,
of total mass M , we find that one solution of (1) is the
velocity in-flow field given by †

v (r) = − r̂

√
2GM(1 + α

2 + . . . )

r
(4)

but only when β = −α, for only then is the acceleration of
matter, from (3), induced by this in-flow of the form

g(r) = − r̂
GM(1 + α

2 + . . . )

r2
(5)

which is Newton’s Inverse Square Law of 1687, but with
an effective mass that is different from the actual mass M .

†To see that the flow is inward requires the modelling of the matter by
essentially point-like particles.
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So Newton’s law requires β=−α in (1) although at present
a deeper explanation has not been found. But we also see
modifications coming from the α-dependent terms.

A major recent discovery [13–16] has been that exper-
imental data from the bore hole g anomaly has revealed
that α is the fine structure constant, to within experimental
errors: α= e2/h̄c≈ 1/137.04. This anomaly is that g does
not decrease as rapidly as predicted by Newtonian gravity or
GR as we descend down a bore hole. The dynamics in (1)
and (3) gives the anomaly to be

Δg = 2παGρd (6)

where d is the depth and ρ is the density, being that of glacial
ice in the case of the Greenland Ice Shelf experiments, or
that of rock in the Nevada test site experiment. Clearly (6)
permits the value of α to be determined from the data, giving
α= 1/(137.9± 5) from the Greenland Ice Shelf data and,
independently, α=1/(136.8± 3) from the Nevada test site
data [16].

In general because (1) is a scalar equation it is only
applicable for vorticity-free flows ∇ × v=0, for then we
can write v=∇u, and then (1) can always be solved to
determine the time evolution of u(r, t) given an initial form
at some time t0.∗

The α-dependent term in (1) (with now β=−α) and the
matter acceleration effect, now also given by (3), permits (1)
to be written in the form

∇ ∙ g = −4πGρ− 4πGρDM , (7)

where

ρDM (r, t) ≡
α

32πG

(
(trD)2 − tr(D2)

)
, (8)

where ρDM is an effective matter density that would be
required to mimic the α-dependent spatial self-interaction
dynamics. Then (7) is the differential form for Newton’s
law of gravity but with an additional non-matter effective
matter density. It has been shown [13–16] that this effect
explains the so-called “dark matter” effect in spiral galaxies.
As shown elsewhere it also explains, when used with the
generalised Maxwell’s equations, the gravitational lensing
of light by this “dark matter” effect.

An intriguing aspect to the spatial dynamics is that it is
non-local. Historically this was first noticed by Newton who
called it action-at-a-distance. To see this we can write (1) as
an integro-differential equation

∂v

∂t
= −∇

(
v2

2

)

+

+ G

∫
d3 r′

ρDM (r
′, t) + ρ (r′, t)

|r− r′|3
(r− r′) .

(9)

This shows a high degree of non-locality and non-linearity,

∗Eqn.(1) also has Hubble expanding space solutions.

and in particular that the behaviour of both ρDM and ρ
manifest at a distance irrespective of the dynamics of the
intervening space. This non-local behaviour is analogous to
that in quantum systems. The non-local dynamics associated
with the α dynamics has been tested in various situations, as
discussed herein, and so its validity is well established. This
implies that the minimal spatial dynamics in (1) involves
non-local connectivities.

We term the dynamics of space in (1) as a “flowing
space”. This term can cause confusion because in normal
language a “flow” implies movement of something relative
to a background space; but here there is no existent back-
ground space, only the non-existent mathematical embedding
space. So here the “flow” refers to internal relative motion,
that one parcel of space has a motion relative to a nearby
parcel of space. Hence the absolute velocities in (1) have no
observable meaning; that despite appearances it is only the
relative velocities that have any dynamical significance. Of
course it is this requirement that determined the form of (1),
and as implemented via the embedding space technique.

However there is an additional role for the embedding
space, namely as a coordinate system used by a set of coop-
erating observers. But again while this is useful for their
discourse it is not real; it is not part of reality.

3 Black holes

Eqn. (1) has “black hole” solutions. The generic term “black
hole” is used because they have a compact closed event hor-
izon where the in-flow speed relative to the horizon equals
the speed of light, but in other respects they differ from the
putative black holes of General Relativity† — in particular
their gravitational acceleration is not inverse square law. The
evidence is that it is these new “black holes” from (1) that
have been detected. There are two categories: (i) an in-flow
singularity induced by the flow into a matter system, such
as, herein, a spherical galaxy or globular cluster. These black
holes are termed minimal black holes, as their effective mass
is minimal, (ii) primordial naked black holes which then
attract matter. These result in spiral galaxies, and the ef-
fective mass of the black hole is larger than required merely
by the matter induced in-flow. These are therefore termed
non-minimal black holes. These explain the rapid formation
of structure in the early universe, as the gravitational accele-
ration is approximately 1/r rather than 1/r2. This is the
feature that also explains the so-called “dark matter” effect
in spiral galaxies. Here we consider only the minimal black
holes.

Consider the case where we have a spherically symmetric
matter distribution at rest, on average with respect to distant
space, and that the in-flow is time-independent and radially
symmetric. Then (1) is best analysed via (9), which can now

†It is probably the case that GR has no such solutions — they do not
obey the boundary conditions at the singularity, see Crothers [17].
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Galaxy Type MBH (+,−) M Ref

M87 E0 3.4 (1.0, 1.0)×109 6.2±1.7×1011 1
NGC4649 E1 2.0 (0.4, 0.6)×109 8.4±2.2×1011 2

M84 E1 1.0 (2.0, 0.6)×109 5.0±1.4×1011 3
M32 E2 2.5 (0.5, 0.5)×106 9.6±2.6×108 4

NGC4697 E4 1.7 (0.2, 0.1)×108 2.0±0.5×1011 2
IC1459 E3 1.5 (1.0, 1.0)×109 6.6±1.8×1011 5

NGC3608 E2 1.9 (1.0, 0.6)×108 9.9±2.7×1010 2
NGC4291 E2 3.1 (0.8, 2.3)×108 9.5±2.5×1010 2
NGC3377 E5 1.0 (0.9, 0.1)×108 7.8±2.1×1010 2
NGC4473 E5 1.1 (0.4, 0.8)×108 6.9±1.9×1010 2
Cygnus A E 2.9 (0.7, 0.7)×109 1.6±1.1×1012 6
NGC4261 E2 5.2 (1.0, 1.1)×108 4.5±1.2×1011 7
NGC4564 E3 5.6 (0.3, 0.8)×107 5.4±1.5×1010 2
NGC4742 E4 1.4 (0.4, 0.5)×107 1.1±0.3×1010 8
NGC3379 E1 1.0 (0.6, 0.5)×108 8.5±2.3×1010 9
NGC5845 E3 2.4 (0.4, 1.4)×108 1.9±0.5×1010 2
NGC6251 E2 6.1 (2.0, 2.1)×108 6.7±1.8×1011 10

Globular
cluster MBH(+,−) M Ref

M15 1.7 (2.7, 1.7)×103 4.9 ×105 10
G1 1.8 (1.4, 0.8)×104 1.35±0.5×107 11

Table 1. Black Hole masses and host masses for various spherical
galaxies and globular clusters. References: (1) Macchetto et al.
1997; (2) Gebhardt et al. 2003; (3) average of Bower et al.
1998; Maciejewski & Binney 2001; (4) Verolme et al. 2002; (5)
average of Verdoes Klein et al. 2000 and Cappellari et al. 2002;
(6) Tadhunter et al. 2003; (7) Ferrarese et al. 1996; (8) Tremaine
et al. 2002; (9) Gebhardt et al. 2000; (10) Ferrarese & Ford 1999;
(11) Gerssen et al. 2002; (12) Gebhardt et al. 2002. Least squares
best fit of this data to Log[MBH ] = Log[α

2
] + xLog[M ] gives

α = 1/137.4 and x = 0.974. Data and best fit are shown in Fig. 2.
Table adapted from Table 1 of [18].

be written in the form

|v (r)|2 = 2G
∫
d3r′

ρDM (r
′) + ρ (r′)

|r− r′|
(10)

in which the angle integrations may be done to yield

v (r)2 =
8πG

r

∫ r

0

s2
[
ρDM (s) + ρ (s)

]
ds+

+8πG

∫ ∞

r

s
[
ρDM (s) + ρ (s)

]
ds ,

(11)

where with v′= dv (r)/dr,∗

ρDM (r) =
α

8πG

(
v2

2r2
+
vv′

r

)

. (12)

To obtain the induced in-flow singularity to O(α) we
substitute the non-α term in (11) into (12) giving the effect-
ive matter density that mimics the spatial self-interaction of

∗Previous papers had a typo error in this expression. Thanks to Andree
Blotz for noting that.

the in-flow,

ρDM (r) =
α

2r2

∫ ∞

r

sρ (s) ds+O(α2) . (13)

We see that the effective “dark matter” effect is concen-
trated near the centre, and we find that the total effective
“dark matter” mass is

MDM ≡ 4π
∫ ∞

0

r2ρDM (r) dr =

=
4πα

2

∫ ∞

0

r2ρ(r) dr +O(α2) =
α

2
M +O(α2) .

(14)

This result applies to any spherically symmetric matter
distribution, and is the origin of the α terms in (4) and (5).
It is thus responsible for the bore hole anomaly expression
in (6). This means that the bore hole anomaly is indicative
of an in-flow singularity at the centre of the Earth. This
contributes some 0.4% of the effective mass of the Earth,
as defined by Newtonian gravity. However in star systems
this minimal black hole effect is more apparent, and we
label MDM as MBH . Table 1 shows the effective “black
hole” masses attributed to various spherically symmetric star
systems based upon observations and analysis of the motion
of gases and stars in these systems. The prediction of the
dynamics of space is that these masses should obey (14). The
data from Table 1 is plotted in Fig. 2, and we see the high
precision to which (14) is indeed satisfied, and over some 6
orders of magnitude, giving from this data that α ≈ 1/137.4.

The application of the spatial dynamics to spiral galaxies
is discussed in [13–16] where it is shown that a complete
non-matter explanation of the spiral galaxy rotation speed
anomaly is given: there is no such stuff as “dark matter” — it
is an α determined spatial self-interaction effect. Essentially
even in the non-relativistic regime the Newtonian theory of
gravity, with its “universal” Inverse Square Law, is deeply
flawed.

4 Spacetime

The curved spacetime explanation for gravity is widely
known. Here an explanation for its putative success is given,
for there is a natural definition of a spacetime that arises
from (1), but that it is purely a mathematical construction
with no ontological status — it is a mere mathematical artifact.

First consider the generalised Schrödinger [12]

ih̄
∂ψ (r, t)

∂t
= H(t)ψ(r, t), (15)

where the free-fall hamiltonian is

H(t) = −ih̄

(

v ∙ ∇+
1

2
∇∙v

)

−
h̄2

2m
∇2 (16)

As discussed in [12] this is uniquely defined by the re-
quirement that the wave function be attached to the dynam-
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Fig. 2: Log-Log plot of black hole masses MBH and host galaxy
or globular cluster masses M (in solar units) from Table 1. Straight
line is least squares best fit to Log[MBH ] =Log[α

2
] +xLog[M ],

giving α= 1/137.4 and x= 0.974. The borehole g-anomaly
gives α= 1/(137.9±5) from the Greenland Ice Shelf data and
α= 1/(136.8±3) from the Nevada test site data [16].

ical space, and not to the embedding space, which is a mere
mathematical artifact. We can compute the acceleration of a
localised wave packet according to

g ≡
d 2

dt2
(
ψ(t), rψ(t)

)
=

=
∂v

∂t
+ (v ∙ ∇)v + (∇× v)× vR

(17)

where vR=v0−v is the velocity of the wave packet rela-
tive to the local space, as v0 is the velocity relative to
the embedding space. Apart from the vorticity term which
causes rotation of the wave packet∗ we see, as promised, that
this matter acceleration is equal to that of the space itself,
as in (3). This is the first derivation of the phenomenon of
gravity from a deeper theory: gravity is a quantum effect
— namely the refraction of quantum waves by the internal
differential motion of the substructure patterns to space it-
self. Note that the equivalence principle has now been ex-
plained, as this “gravitational” acceleration is independent of
the mass m of the quantum system.

An analogous generalisation of the Dirac equation is also
necessary giving the coupling of the spinor to the actual
dynamical space, and again not to the embedding space as
has been the case up until now,

ih̄
∂ψ

∂t
=−ih̄

(

c~α ∙∇+v ∙∇+
1

2
∇∙v

)

ψ+βmc2ψ (18)

where ~α and β are the usual Dirac matrices. Repeating the
analysis in (17) for the space-induced acceleration we obtain†

g=
∂v

∂t
+(v∙∇)v+(∇×v)×vR−

vR

1− v
2
R

c2

1

2

d

dt

(
v2R
c2

)

(19)

∗This is the Lense-Thirring effect, and such vorticity is being detected
by the Gravity Probe B satellite gyroscope experiment [33].

†Some details are incomplete in this analysis.

which generalises (17) by having a term which limits the
speed of the wave packet relative to space to be < c. This
equation specifies the trajectory of a spinor wave packet in
the dynamical space.

We shall now show how this leads to both the spacetime
mathematical construct and that the geodesic for matter
worldlines in that spacetime is equivalent to trajectories from
(19). First we note that (19) may be obtained by extremising
the time-dilated elapsed time

τ
[
r0
]
=

∫
dt

(

1−
v2R
c2

)1/2
(20)

with respect to the particle trajectory r0 (t) [1]. This happens
because of the Fermat least-time effect for waves: only along
the minimal time trajectory do the quantum waves remain in
phase under small variations of the path. This again emphas-
ises that gravity is a quantum effect. We now introduce a
spacetime mathematical construct according to the metric

ds2 = dt2 −

(
dr− v (r, t) dt

)2

c2
= gμνdx

μdxν . (21)

Then according to this metric the elapsed time in (20) is

τ =

∫
dt

√

gμν
dxμ

dt

dxν

dt
, (22)

and the minimisation of (22) leads to the geodesics of the
spacetime, which are thus equivalent to the trajectories from
(20), namely (19). Hence by coupling the Dirac spinor dyn-
amics to the space dynamics we derive the geodesic formal-
ism of General Relativity as a quantum effect, but without
reference to the Hilbert-Einstein equations for the induced
metric. Indeed in general the metric of this induced space-
time will not satisfy these equations as the dynamical space
involves the α-dependent dynamics, and α is missing from
GR. So why did GR appear to succeed in a number of
key tests where the Schwarzschild metric was used? The
answer is provided by identifying the induced spacetime
metric corresponding to the in-flow in (4) outside of a spher-
ical matter system, such as the Earth. Then (21) becomes

ds2 = dt2 −
1

c2

(

dr +

√
2GM(1+α

2+ . . . )

r
dt

)2
−

−
1

c2
r2
(
dθ2 + sin2θ dφ2

)
.

(23)

Making the change of variables‡ t→ t′ and r→ r′ = r
with

t′ = t−
2

c

√
2GM(1+α

2+ . . . ) r

c2
+

+
4GM(1+α

2+ . . . )

c3
tanh−1

√
2GM(1+α

2+ . . . )

c2r

(24)

‡No unique choice of variables is required. This choice simply leads to
a well-known form for the metric.
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this becomes (and now dropping the prime notation)

ds2 =

(

1−
2GM(1+α

2+ . . . )

c2r

)

dt2−

−
1

c2
r2
(
dθ2+sin2θ dφ2

)
−

dr2

c2
(

1−
2GM(1+α

2+ . . . )

c2r

)
(25)

which is one form of the the Schwarzschild metric but with
the α-dynamics induced effective mass shift. Of course this
is only valid outside of the spherical matter distribution, as
that is the proviso also on (4). As well the above particular
change of coordinates also introduces spurious singularities
at the event horizon∗, but other choices do not do this. Hence
in the case of the Schwarzschild metric the dynamics missing
from both the Newtonian theory of gravity and General Rela-
tivity is merely hidden in a mass redefinition, and so didn’t
affect the various standard tests of GR, or even of Newtonian
gravity. Note that as well we see that the Schwarzschild
metric is none other than Newtonian gravity in disguise,
except for the mass shift. While we have now explained
why the GR formalism appeared to work, it is also clear that
this formalism hides the manifest dynamics of the dynamical
space, and which has also been directly detected in gas-mode
interferometer and coaxial-cable experiments.

One of the putative key tests of the GR formalism was
the gravitational bending of light. This also immediately
follows from the new space dynamics once we also general-
ise the Maxwell equations so that the electric and magnetic
fields are excitations of the dynamical space. The dynamics
of the electric and magnetic fields must then have the form,
in ‘empty’ space,

∇×E = −μ

(
∂H

∂t
+ v ∙ ∇H

)

∇×H = ε

(
∂E

∂t
+ v ∙ ∇E

)

∇ ∙H = 0, ∇ ∙E = 0

(26)

which was first suggested by Hertz in 1890 [34]. As discuss-
ed elsewhere the speed of EM radiation is now c=1/

√
μ ε

with respect to the space, and in general not with respect
to the observer if the observer is moving through space, as
experiment has indicated again and again. In particular the
in-flow in (4) causes a refraction effect of light passing close
to the Sun, with the angle of deflection given by

δ = 2
v2

c2
=
4GM(1 + α

2 + . . . )

c2d
(27)

where v is the in-flow speed at the surface of the Sun,
and d is the impact parameter, essentially the radius of the

∗The event horizon of (25) is at a different radius from the actual event
horizon of the black hole solutions that arise from (1).

Sun. Hence the observed deflection of 8.4×10−6 radians is
actually a measure of the in-flow speed at the Sun’s surface,
and that gives v= 615 km/s. At the Earth distance the Sun
induced spatial in-flow speed is 42 km/s, and this has been
extracted from the 1925/26 gas-mode interferometer Miller
data [1, 3]. These radial in-flows are to be vectorially summ-
ed to the galactic flow of some 400 km/s, but since that flow
is much more uniform it does not affect the light bending by
the Sun in-flow component†. Hence the deflection of light by
the Sun is a way of directly measuring the in-flow speed at
the Sun’s surface, and has nothing to do with “real” curved
spacetime. These generalised Maxwell equations also predict
gravitational lensing produced by the large in-flows associat-
ed with new “black holes” in galaxies. So again this effect
permits the direct observation of the these black hole effects
with their non-inverse square law accelerations.

5 Conclusions

We have shown how minimal assumptions about the internal
dynamics of space, namely how embeddability in a mathem-
atical space such as an E3 or an S3, expressing its inherent
3-dimensionality, leads to various predictions ranging from
the anisotropy of the speed of light, as expressed in the
required generalisation of Maxwell’ s equations, and which
has been repeatedly observed since the Michelson-Morley
experiment [5] of 1887, to the derivation of the phenomenon
of gravity that follows after we generalise the Schrödinger
and Dirac equations. This shows that the gravitational acce-
leration of matter is a quantum effect: it follows from the re-
fraction of quantum waves in the inhomogeneities and time-
dependencies of the flowing dynamical space. In particular
the analysis shows that the acceleration of quantum matter
is identical to the convective acceleration of the structured
space itself. This is a non-trivial result. As well in the case
of the Dirac equation we derive the spacetime formalism as
well as the geodesic description of matter trajectories, but in
doing so reveal that the spacetime is merely a mathematical
construct. We note that the relativistic features of the Dirac
equation are consistent with the absolute motion of the wave
function in the dynamical 3-space. This emphasis yet again
that Special Relativity does not require the isotropy of the
speed of light, as is often incorrectly assumed.

Here we have further extended the observational evi-
dence that it is the fine structure constant that determines
the strength of the spatial self-interaction in this new physics
by including data from black hole masses in 19 spherical
star systems. Elsewhere we have already shown that the
new space dynamics explains also the spiral galaxy rotation
velocity anomaly; that it is not caused by a new form of
matter, that the notion of “dark matter” is just a failure of

†The vector superposition effect for spatial flows is only approximate,
and is discussed in more detail in [35]. The solar system has a galactic
velocity of some 420±30 km/s in the direction RA=5.2 hr, Dec=−67◦.
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Newtonian gravity and GR. We have also shown that the
space dynamics is non-local, a feature that Newton called
action-at-a-distance. This is now extended to include the
effects of the spatial self-interaction. The numerous confir-
mations of that dynamics, summarised herein, demonstrate
the validity of this non-local physics. Of course since New-
ton we have become more familiar with non-local effects
in the quantum theory. The new space dynamics shows that
non-local effects are more general than just subtle effects
in the quantum theory, for in the space dynamics this non-
local dynamics is responsible for the supermassive black
holes in galaxies. This non-local dynamics is responsible for
two other effects: (i) that the dynamics of space within an
event horizon, say enclosing a black hole in-flow singularity
affects the space outside of the horizon, even though EM
radiation and matter cannot propagate out through the event
horizon, as there the in-flow speed exceeds the speed of
light. So in this new physics we have the escape of informat-
ion from within the event horizon, and (ii) that the universe
overall is more highly connected than previously thought.
This may explain why the universe is more uniform than
expected on the basis of interactions limited by the speed of
light, i. e. we probably have a solution to the cosmological
horizon problem.

Elsewhere [1] we have argued that the dynamical space
has the form of a quantum foam and so non-local quantum
effects are to be expected. So it might be argued that the suc-
cessful prediction of the masses of these black hole masses,
and their dependence on the fine structure constant, is indi-
cative of a grand unification of space and the quantum the-
ory. This unification is not coming from the quantisation of
gravity, but rather from a deeper modelling of reality as an
information-theoretic system with emergent quantum-space
and quantum matter.

This work is supported by an Australian Research Coun-
cil Discovery Grant.
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