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There are now at least eight experiments extending over more than 100
years that have detected the anisotropy of the speed of light, implying the
absolute motion of the detecting apparatus through a dynamical space.
There are also many experiments that because of design flaws have failed
to detect that anisotropy. This light-speed anisotropy is consistent with
relativistic effects and Lorentz symmetry, contrary to prevailing beliefs in
physics. The theoretical and experimental evidence implies that physics
has failed to realise the existence of a dynamical 3-space, and that mo-
tion relative to that space is the cause of various relativistic effects, as
proposed by Lorentz in 1899. As well there is growing evidence that the
phenomenon of gravity is more complex than previously believed, that
Newtonian gravity appears to have failed even in the non-relativistic
regime. A new physics has emerged that builds upon this observed dy-
namical 3-space and provides a dynamical theory for that space. This
has resulted in a necessary generalisation of the Maxwell, Schrödinger
and Dirac equations, which then provide an explanation for gravity as
an emergent phenomenon within the new physics. From the generalised
Dirac equation we show that the spacetime formalism is derivable, but
as merely a mathematical construct whose geodesics arise from the tra-
jectories of quantum wavepackets in the 3-space. However the metric
of this spacetime is shown not to satisfy the Hilbert-Einstein equations,
except in the special case of the Schwarzschild metric. Hence we demon-
strate that the successes of the General Relativity formalism have been
more illusory than real, that its successes are in fact quite limited, which
explains why it failed to account for the bore hole anomaly, the so-called
‘dark matter’ spiral galaxy rotation anomaly, the systematics of black
hole masses and so on. It also failed in that the dynamics of the 3-
space is determined by two fundamental constants, namely G and the
fine structure constant α.

1 Introduction

We present here a derivation of General Relativity [1, 2]1, together with its geodesic
formalism, from a deeper theory in which the phenomenon of gravity emerges as

1There are ongoing developments regarding the priority issue of GR. However it is becoming clear
that GR is actually a flawed theory of gravity, as discussed herein and elsewhere, which will put that
issue into a different perspective.
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a quantum matter effect when coupled to a dynamical structured 3-space. This
derivation shows that both the flat and curved spacetime formalism arise as a purely
mathematical construct - it has no ontological significance. The experimental evidence
is that a dynamical 3-space has been repeatedly observed over more than 100 years,
and that physics has simply missed the existence of this 3-space [3-13]. It is then
necessary to generalise the Maxwell, Schrödinger and Dirac equations in order to
couple these wave phenomena to the 3-space [14, 15]. In the case of the Schrödinger
and Dirac equations we see that gravity arises as an emergent quantum phenomena,
while from the generalised Maxwell equations (as first suggested by Hertz in 1890
[16]) we obtain the light bending effects. The experimental data has shown that the
dynamics of the observed 3-space involves two fundamental constant G and α, the
fine structure constant [15, 17, 18, 19, 20]. This discovery is surely indicating that a
new unified theory of reality is emerging. Although the curved spacetime manifold
formalism is shown to yield the correct matter and light trajectories, via the geodesic
formalism, the metric of the spacetime does not satisfy the Hilbert-Einstein equations
[1, 2] except in the special case of the Schwarzschild metric, and all but one of the
putative successes of General Relativity involved that metric. So the experimental,
observational and theoretical evidence is that the successes of General Relativity were
more illusory than real. It is also becoming clear that it is the Lorentz interpretation
[21] of relativistic effects that is being confirmed by experiment, namely that absolute
motion of quantum and EM phenomena through the 3-space causes the well known
relativistic effects.

It is commonly assumed that the successes of the special relativity formalism
rest upon the assumption that the speed of light is the same for all observers, that
the speed of light is isotropic for any observer, and that any claims of an observed
anisotropy would be inconsistent with the successes of the special relativity formalism.
However this assumption is demonstrably wrong as discussed in [13, 22]. Of the
eight experiments that have independently and consistently detected that anisotropy
the most recent [13] has also detected gravitational waves, though not of the form
supposedly predicted from General Relativity.

2 Dynamics of Space

At a deeper level an information-theoretic approach to modelling reality, Process
Physics [22], leads to an emergent structured ‘space’ which is 3-dimensional and dy-
namic, but where the 3-dimensionality is only approximate, in that if we ignore non-
trivial topological aspects of the space, then it may be embedded in a 3-dimensional
geometrical manifold. Here the space is a real existent discrete but fractal network
of relationships or connectivities, but the embedding space is purely a mathematical
way of characterising the 3-dimensionality of the network. This is illustrated in Fig.1.
This is not an ether model; that notion involved a duality in that both the ether and
the space in which it was embedded were both real. Now the key point is that how we
embed the network in the embedding space is very arbitrary: we could equally well
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Figure 1: This is an iconic graphical representation of
how a dynamical network has its inherent approximate 3-
dimensionality displayed by an embedding in a mathemat-
ical space such as an E3 or an S3. This space is not real;
it is purely a mathematical artifact. Nevertheless this em-
beddability helps determine the minimal dynamics for the
network, as in (1). At a deeper level the network is a
quantum foam system [22]. The dynamical space is not an
ether model, as the embedding space does not exist.

rotate the embedding or use an embedding that has the network translated or trans-
lating. These general requirements then dictate the minimal dynamics for the actual
network, at a phenomenological level. To see this we assume at a coarse grained level
that the dynamical patterns within the network may be described by a velocity field
v(r, t), where r is the location of a small region in the network according to some
arbitrary embedding. For simplicity we assume here that the global topology of the
network is not significant for the local dynamics, and so we embed in an E3, although
a generalisation to an embedding in S3 is straightforward. The minimal dynamics
then follows from the above by writing down the lowest-order zero-rank tensors, of
dimension 1/t2, that are invariant under translation and rotation, giving2

∇.
(

∂v

∂t
+ (v.∇)v

)

+
α

8
(trD)2 +

β

8
tr(D2) = −4πGρ; Dij =

1

2

(

∂vi

∂xj
+
∂vj

∂xi

)

(1)

where ρ is the effective matter density.
In Process Physics quantum matter are topological defects in the network, but

here it is sufficient to give a simple description in terms of an effective density, but
which can also model the ‘dark energy’ effect and electromagnetic energy effects,
which will be discussed elsewhere. We see that there are only four possible terms,
and so we need at most three possible constants to describe the dynamics of space:
G,α and β. G will turn out to be Newton’s gravitational constant, and describes the
rate of non-conservative flow of space into matter. To determine the values of α and
β we must, at this stage, turn to experimental data.

However most experimental data involving the dynamics of space is observed by
detecting the so-called gravitational acceleration of matter, although increasingly light
bending is giving new information. Now the acceleration a of the dynamical patterns
in space is given by the Euler or convective expression

a(r, t) ≡ lim
∆t→0

v(r + v(r, t)∆t, t +∆t) − v(r, t)

∆t
=
∂v

∂t
+ (v.∇)v (2)

2Note that then, on dimensional grounds, the spatial dynamics cannot involve the speed of light c,
except on the RHS where relativistic effects come into play if the speed of matter relative to the local
space becomes large, see [22]. This has significant implications for the nature and speed of so-called
‘gravitational’ waves.
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and this appears in one of the terms in (1). As shown in [14] and discussed later
herein the acceleration g of quantum matter is identical to this acceleration, apart
from vorticity and relativistic effects, and so the gravitational acceleration of matter
is also given by (2).

Outside of a spherically symmetric distribution of matter, of total mass M , we
find that one solution of (1) is the velocity in-flow field given by3

v(r) = −r̂

√

2GM(1 + α
2

+ ..)

r
(3)

but only when β = −α, for only then is the acceleration of matter, from (2), induced
by this in-flow of the form

g(r) = −r̂
GM(1 + α

2
+ ..)

r2
(4)

which is Newton’s Inverse Square Law of 1687, but with an effective mass M(1+ α
2
+..)

that is different from the actual mass M . So Newton’s law requires β = −α in
(1) although at present a deeper explanation has not been found. But we also see
modifications coming from the α-dependent terms.

In general because (1) is a scalar equation it is only applicable for vorticity-free
flows ∇ × v = 0, for then we can write v = ∇u, and then (1) can always be solved
to determine the time evolution of u(r, t) given an initial form at some time t0. The
α-dependent term in (1) (with now β = −α) and the matter acceleration effect, now
also given by (2), permits (1) to be written in the form

∇.g = −4πGρ− 4πGρDM , (5)

where
ρDM (r, t) ≡

α

32πG
((trD)2 − tr(D2)), (6)

which is an effective matter density that would be required to mimic the α-dependent
spatial self-interaction dynamics. Then (5) is the differential form for Newton’s law
of gravity but with an additional non-matter effective matter density. This effect
explains the so-called ‘dark matter’ effect in spiral galaxies, bore hole g anomalies, and
the systematics of galactic black hole massess. As shown elsewhere it also explains,
when used with the generalised Maxwell’s equations, the gravitational lensing of light
by this ‘dark matter’ effect.

An intriguing aspect to the spatial dynamics is that it is non-local. Historically
this was first noticed by Newton who called it action-at-a-distance. To see this we
can write (1) as an integro-differential equation

∂v

∂t
= −∇

(

v2

2

)

+ G
∫

d3r′
ρDM (r′, t) + ρ(r′, t)

|r− r′|3
(r − r′) (7)

3To see that the flow is inward requires the modelling of the matter by essentially point-like
particles.
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This shows a high degree of non-locality and non-linearity, and in particular that
the behaviour of both ρDM and ρ manifest at a distance irrespective of the dynamics
of the intervening space. This non-local behaviour is analogous to that in quantum
systems. The non-local dynamics associated with the α dynamics has been tested in
various situations, as discussed herein, and so its validity is well established. This
implies that the minimal spatial dynamics in (1) involves non-local connectivities.

We term the dynamics of space in (1) as a ‘flowing space’. This term can cause
confusion because in normal language a ‘flow’ implies movement of something relative
to a background space; but here there is no existent background space, only the
non-existent mathematical embedding space. So here the ‘flow’ refers to internal
relative motion, that one parcel of space has a motion relative to a nearby parcel of
space. Hence the absolute velocities in (1) have no observable meaning; that despite
appearances it is only the relative velocities that have any dynamical significance. Of
course it is this requirement that determined the form of (1), as implemented via the
embedding space technique.

The new space dynamics shows that non-local effects are more general than just
subtle effects in the quantum theory, for in the space dynamics this non-local dynamics
is responsible for the supermassive black holes in galaxies. This non-local dynamics
is responsible for two other effects: (i) that the dynamics of space within an event
horizon, say enclosing a black hole in-flow singularity, affects the space outside of the
horizon, even though EM radiation and matter cannot propagate out through the
event horizon, as there the in-flow speed exceeds the speed of light. So in this new
physics we have the escape of information from within the event horizon, and (ii)
that the universe overall is more highly connected than previously thought. This may
explain why the universe is more uniform than expected on the basis of interactions
limited by the speed of light, i.e we probably have a solution to the cosmological
horizon problem.

However there is an additional role for the embedding space, namely as a coordi-
nate system used by a set of cooperating observers. But again while this is useful for
their discourse it is not real; it is not part of reality.

3 Bore Holes and Black Holes

A major recent discovery [17, 18, 19, 20] has been that experimental data from the
bore hole g anomaly has revealed that α is the fine structure constant, to within
experimental errors: α = e2/h̄c ≈ 1/137.04. This anomaly is that g does not decrease
as rapidly as predicted by Newtonian gravity or GR as we descend down a bore hole.
The dynamics in (1) and (2) gives the anomaly to be

∆g = 2παGρd (8)

where d is the depth and ρ is the density, being that of glacial ice in the case of
the Greenland Ice Shelf experiments, or that of rock in the Nevada test site ex-
periment. Clearly (8) permits the value of α to be determined from the data,
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giving α = 1/(137.9 ± 5) from the Greenland Ice Shelf data and, independently,
α = 1/(136.8 ± 3) from the Nevada test site data [20].

Eqn.(1) has ‘black hole’ solutions. The generic term ‘black hole’ is used because
they have a compact closed event horizon where the in-flow speed relative to the
horizon equals the speed of light, but in other respects they differ from the putative
black holes of General Relativity4 - in particular their gravitational acceleration is
not inverse square law. The evidence is that it is these new ‘black holes’ from (1) that
have been detected. There are two categories: (i) an in-flow singularity induced by
the flow into a matter system, such as, herein, a spherical galaxy or globular cluster.
These black holes are termed minimal black holes, as their effective mass is minimal,
(ii) primordial naked black holes which then attract matter. These result in spiral
galaxies, and the effective mass of the black hole is larger than required merely by the
matter induced in-flow. These are therefore termed non-minimal black holes. These
explain the rapid formation of structure in the early universe, as the gravitational
acceleration is approximately 1/r rather than 1/r2. This is the feature that also
explains the so-called ‘dark matter’ effect in spiral galaxies.

Consider the case where we have a spherically symmetric matter distribution at
rest, on average with respect to distant space, and that the in-flow is time-independent
and radially symmetric. Then (1) can now be written in the form, with v′ = dv(r)/dr,

2
vv′

r
+ (v′)2 + vv′′ = −4πGρ(r) − 4πGρDM (v(r)), (9)

or from (7) in the form

|v(r)|2 = 2G
∫

d3r′
ρDM (r′) + ρ(r′)

|r − r′|
(10)

in which the angle integrations may be done to yield

v(r)2 =
8πG

r

∫ r

0

s2 [ρDM (s) + ρ(s)] ds + 8πG
∫

∞

r
s [ρDM (s) + ρ(s)] ds, (11)

and now

ρDM (r) =
α

8πG

(

v2

2r2
+

vv′

r

)

. (12)

To obtain the induced minimal in-flow singularity to O(α) we substitute the non-α
term in (11) into (12) giving the effective matter density that mimics the spatial
self-interaction of the in-flow,

ρDM (r) =
α

2r2

∫

∞

r
sρ(s)ds + O(α2). (13)

4It is probably the case that GR has no such solutions - they do not obey the boundary conditions
at the singularity.
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We see that the effective ‘dark matter’ effect is concentrated near the centre, and we
find that the total effective ‘dark matter’ mass is

MDM ≡ 4π
∫

∞

0

r2ρDM (r)dr =
4πα

2

∫

∞

0

r2ρ(r)dr + O(α2) =
α

2
M + O(α2). (14)

This result applies to any spherically symmetric matter distribution, and is the origin
of the α terms in (3) and (4). It is thus responsible for the bore hole anomaly
expression in (8). This means that the bore hole anomaly is indicative of an in-flow
singularity at the centre of the earth. This contributes some 0.4% of the effective
mass of the earth, as defined by Newtonian gravity. However in star systems this
minimal black hole effect is more apparent, and we label MDM as MBH . So far black
holes in 19 spherical star systems have been detected and together their masses give
a best-fit value of α ≈ 1/137.4 [15].

4 Spiral Galaxy Rotation Anomaly

The application of the spatial dynamics to spiral galaxies is discussed in [17, 18, 19,
20] where it is shown that a complete non-matter explanation of the spiral galaxy
rotation speed anomaly is given: there is no such stuff as ‘dark matter’ - it is an
α determined spatial self-interaction effect. Essentially even in the non-relativistic
regime the Newtonian theory of gravity, with its ‘universal’ Inverse Square Law, is
deeply flawed. Consider the non-perturbative solution of (1), say for a galaxy with
a non-spherical matter distribution. Then numerical techniques are necessary, but
beyond a sufficiently large distance the in-flow will have spherical symmetry, and in
that region we may use the spherically symmetric form of (1). Then (9) has an exact
non-perturbative two-parameter class of analytic solutions

v(r) = K







1

r
+

1

R

(

R

r

)

α

2







1/2

(15)

where K and R are arbitrary constants in the ρ = 0 region, but whose values are
determined by matching to the solution in the matter region. Here R characterises
the length scale of the non-perturbative part of this expression, and K depends on α
and G and details of the matter distribution. The galactic circular orbital velocities
of stars etc may be used to observe this in-flow process in a spiral galaxy and from
(4) and (15) we obtain a replacement for the Newtonian ‘inverse square law’ ,

g(r) =
K2

2







1

r2
+

α

2rR

(

R

r

)

α

2






, (16)
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in the asymptotic limit. From (16) the centripetal acceleration relation for circular
orbits vO(r) =

√

rg(r) gives a ‘universal rotation-speed curve’

vO(r) =
K

2







1

r
+

α

2R

(

R

r

)

α

2







1/2

(17)

Because of the α dependent part this rotation-velocity curve falls off extremely slowly
with r, as is indeed observed for spiral galaxies. Of course it was the inability of the
Newtonian and Einsteinian gravity theories to explain these observations that led to
the notion of ‘dark matter’.

5 Generalising the Maxwell, Schrödinger and Dirac Equa-

tions

One of the putative key tests of the GR formalism was the gravitational bending of
light. This also immediately follows from the new space dynamics once we also gen-
eralise the Maxwell equations so that the electric and magnetic fields are excitations
of the dynamical space. The dynamics of the electric and magnetic fields must then
have the form, in empty space,

∇× E = −µ
(

∂H

∂t
+ v.∇H

)

; ∇×H = ε
(

∂E

∂t
+ v.∇E

)

; ∇.H = 0; ∇.E = 0

(18)
which was first suggested by Hertz in 1890 [16]. As easily determined the speed of
EM radiation is now c = 1/

√
µε with respect to the space, and in general not with

respect to the observer if the observer is moving through space, as experiment has
indicated again and again. In particular the in-flow in (3) causes a refraction effect
of light passing close to the sun, with the angle of deflection given by

δ = 2
v2

c2
=

4GM(1 + α
2

+ ..)

c2d
(19)

where v is the in-flow speed at distance d and d is the impact parameter, here the
radius of the sun. Hence the observed deflection of 8.4 × 10−6 radians is actually a
measure of the in-flow speed at the sun’s surface, and that gives v = 615km/s. At
the earth distance the sun induced spatial in-flow speed is 42km/s, and this has been
extracted from the 1925/26 gas-mode interferometer Miller data [4, 22]. These radial
in-flows are to be vectorially summed to the galactic flow of some 400km/s, but since
that flow is much more uniform it does not affect the light bending by the sun in-flow
component. The vector superposition effect for spatial flows is only approximate, and
is discussed in [22]. The solar system has a galactic velocity of some 400±30km/s
in the direction RA=5.2hr, Dec=-670, as confirmed in a new light-speed anisotropy
experiment [13]. Hence the deflection of light by the sun is a way of directly measuring
the spatial in-flow speed at the sun’s surface, and has nothing to do with an actual
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curved spacetime. These generalised Maxwell equations also predict gravitational
lensing produced by the large in-flows associated with new ‘black holes’ in galaxies.
So again this effect permits the direct observation of the these black hole effects with
their non inverse-square-law accelerations.

Next consider the generalised Schrödinger equation [14]

ih̄
∂ψ(r, t)

∂t
= H(t)ψ(r, t), (20)

where the free-fall hamiltonian is

H(t) = −ih̄
(

v.∇ +
1

2
∇.v

)

−
h̄2

2m
∇2 (21)

As discussed in [14] this is uniquely defined by the requirement that the wave function
be attached to the dynamical space, and not to the embedding space, and that H(t)
be hermitian. We can compute the acceleration of a localised wave packet according
to

g ≡
d2

dt2
(ψ(t), rψ(t)) =

∂v

∂t
+ (v.∇)v + (∇× v) × vR (22)

where vR = v0 − v is the velocity of the wave packet relative to the local space, as
v0 is the velocity relative to the embedding space. Apart from the vorticity term
which causes rotation of the wave packet5 we see, as promised, that this matter
acceleration is equal to that of the space itself, as in (2). This is the first derivation
of the phenomenon of gravity from a deeper theory: gravity is a quantum effect -
namely the refraction of quantum waves by the internal differential motion of the
substructure patterns to space itself. Note that the equivalence principle has now
been explained, as this ‘gravitational’ acceleration is independent of the mass m of
the quantum system.

An analogous generalisation of the Dirac equation is also necessary giving the
coupling of the spinor to the actual dynamical space, and again not to the embedding
space as has been the case up until now,

ih̄
∂ψ

∂t
= −ih̄

(

c)α.∇ + v.∇ +
1

2
∇.v

)

ψ + βmc2ψ (23)

where )α and β are the usual Dirac matrices. Repeating the analysis in (22) for the
space-induced acceleration we obtain

g =
∂v

∂t
+ (v.∇)v + (∇× v) × vR −

vR

1 −
v2

R

c2

1

2

d

dt

(

v2
R

c2

)

(24)

which generalises (22) by having a term which limits the speed of the wave packet
relative to space to be < c. This equation specifies the trajectory of a spinor wave
packet in the dynamical space.

5This explains the Lense-Thirring effect, and such vorticity is being detected by the Gravity Probe
B satellite gyroscope experiment[23].
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6 The Spacetime and Geodesic Formalism

The curved spacetime explanation for gravity is widely known. Here an explanation
for its putative success is given, for there is a natural definition of a spacetime that
arises from (1), but that it is purely a mathematical construction with no ontological
status - it is a mere mathematical artifact. We shall now show how this leads to both
the spacetime mathematical construct and that the geodesic for matter worldlines in
that spacetime is equivalent to trajectories from (24). First we note that (24) may
be obtained by extremising the time-dilated elapsed time

τ [r0] =
∫

dt

(

1 −
v2

R

c2

)1/2

(25)

with respect to the particle trajectory r0(t) [22]. This happens because of the Fermat
least-time effect for waves: only along the minimal time trajectory do the quantum
waves remain in phase under small variations of the path. This again emphasises that
gravity is a quantum effect. We now introduce a spacetime mathematical construct
according to the metric

ds2 = dt2 − (dr− v(r, t)dt)2/c2 = gµνdxµdxν (26)

Then according to this metric the elapsed time in (25) is

τ =
∫

dt

√

gµν
dxµ

dt

dxν

dt
, (27)

and the minimisation of (27) leads to the geodesics of the spacetime, which are thus
equivalent to the trajectories from (25), namely (24). Hence by coupling the Dirac
spinor dynamics to the space dynamics we derive the geodesic formalism of General
Relativity as a quantum effect, but without reference to the Hilbert-Einstein equations
for the induced metric. Indeed in general the metric of this induced spacetime will not
satisfy these equations as the dynamical space involves the α-dependent dynamics,
and α is missing from GR. So why did GR appear to succeed in a number of key tests
where the Schwarzschild metric was used? The answer is provided by identifying the
induced spacetime metric corresponding to the in-flow in (3) outside of a spherical
matter system, such as the earth. Then (26) becomes

ds2 = dt2 −
1

c2
(dr +

√

2GM(1 + α
2

+ ..)

r
dt)2 −

1

c2
r2(dθ2 + sin2(θ)dφ2). (28)

Making the change of variables6 t → t′ and r → r′ = r with

t′ = t −
2

c

√

2GM(1+α
2
+ . . .)r

c2
+

4 GM(1+α
2
+ . . .)

c3
tanh−1

√

2GM(1+α
2
+ . . .)

c2r
(29)

6No unique choice of variables is required. This choice simply leads to a well-known form for the
metric.
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this becomes (and now dropping the prime notation)

ds2 =

(

1 −
2GM(1 + α

2
+ ..)

c2r

)

dt2−
1

c2
r2(dθ2+sin2(θ)dφ2)−

dr2

c2

(

1 −
2GM(1 + α

2
+ ..)

c2r

)

(30)
which is one form of the the Schwarzschild metric but with the α-dynamics induced
effective mass shift. Of course this is only valid outside of the spherical matter dis-
tribution, as that is the proviso also on (3). As well the above particular change
of coordinates also introduces spurious singularities at the event horizon7, but other
choices do not do this. Hence in the case of the Schwarzschild metric the dynamics
missing from both the Newtonian theory of gravity and General Relativity is merely
hidden in a mass redefinition, and so didn’t affect the various standard tests of GR,
or even of Newtonian gravity. Note that as well we see that the Schwarzschild metric
is none other than Newtonian gravity in disguise, except for the mass shift. While we
have now explained why the GR formalism appeared to work, it is also clear that this
formalism hides the manifest dynamics of the dynamical space, and which has also
been directly detected in gas-mode interferometer and coaxial-cable experiments.

7 Hilbert-Einstein Equations

Here we show that the metric of the spacetime manifold (26) emerging from (1) via
the generalised Dirac equation satisfies the Hilbert-Einstein GR [1, 2] equations, but
only in the limit α→ 0. The GR equations are

Gµν ≡ Rµν −
1

2
Rgµν =

8πG

c2
Tµν , (31)

where Gµν is the Einstein tensor, Tµν is the energy-momentum tensor, Rµν = Rα
µαν

and R = gµνRµν and gµν is the matrix inverse of gµν . The curvature tensor is

Rρ
µσν = Γρ

µν,σ − Γρ
µσ,ν + Γρ

ασΓ
α
µν − Γρ

ανΓ
α
µσ, (32)

where Γα
µσ is the affine connection

Γα
µσ =

1

2
gαν

(

∂gνµ

∂xσ
+
∂gνσ

∂xµ
−
∂gµσ

∂xν

)

. (33)

Let us substitute the metric in (26) into (31) using (32) and (33). The various
components of the Einstein tensor are then found to be

G00 =
∑

i,j=1,2,3

viGijvj − c2
∑

j=1,2,3

G0jvj − c2
∑

i=1,2,3

viGi0 + c2G00,

Gi0 = −
∑

j=1,2,3

Gijvj + c2Gi0, i = 1, 2, 3.

Gij = Gij , i, j = 1, 2, 3. (34)
7The event horizon of (30) is at a different radius from the actual event horizon of the black hole

solutions that arise from (1)
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where the Gµν are given by

G00 =
1

2
((trD)2 − tr(D2)),

Gi0 = G0i = −
1

2
(∇× (∇× v))i, i = 1, 2, 3.

Gij =
d

dt
(Dij − δijtrD) + (Dij −

1

2
δijtrD)trD

−
1

2
δijtr(D

2) + (ΩD − DΩ)ij , i, j = 1, 2, 3. (35)

In vacuum, with Tµν = 0, we find from (31) and (34) that Gµν = 0 implies that
Gµν = 0. We see the the Hilbert-Einstein equations demand that

((trD)2 − tr(D2)) = 0. (36)

but it is these terms in (1) that explain the various gravitational anomalies. This
simply corresponds to the fact that GR does not permit the ‘dark matter’ effect
according to (6), and this happens because GR was forced to agree with Newtonian
gravity, in the appropriate limits, and that theory also has no such effect. As well
in GR the energy-momentum tensor Tµν is not permitted to make any reference to
absolute linear motion of the matter; only the relative motion of matter or absolute
rotational motion is permitted, contrary to the experiments [3-13].

It is very significant to note that the above exposition of the GR formalism for the
metric in (26) is exact. Then taking the trace of the Gij equation in (35) we obtain,
also exactly, and in the case of zero vorticity, and outside of matter so that Tµν = 0,

∂

∂t
(∇.v) + ∇.((v.∇)v) = 0 (37)

which is the Newtonian ‘velocity field’ formulation of Newtonian gravity outside of
matter, as in (1) but with α = β = 0.

8 Conclusions

The extensive non-null experimental evidence over more than 100 years for the
anisotropy of the one-way speed of light has finally been understood with the startling
conclusion that a dynamical structured 3-space exists and is responsible for the vari-
ous special relativity effects and even Lorentz symmetry. As reviewed herein this has
lead to an explanation for the phenomenon of gravity, that it is a quantum matter
effect arising from the refraction of the matter quantum waves in the dynamical 3-
space. In deriving the dynamical theory for this 3-space it has been discovered from
various experimental and observational data that its self-interaction coupling constant
in none other than the fine structure constant α. From the generalised Dirac equation
we have shown that the quantum matter trajectories in the 3-space may be deter-
mined from the geodesics of a curved spacetime manifold, but that this spacetime

12



has no ontological status - it is purely a mathematical construct. We have also been
able to derive the Hilbert-Einstein General Relativity formalism, but that derivation
shows that it is only valid in the special limit of α → 0. For the case of the external
Schwarzschild metric the α-dynamics amounts to a rescaling of the mass, and so had
no observational consequences - that is why the various tests of GR using that metric
appeared to be successful. Hence only by finally being able to explain gravity, and
by being able to derive the spacetime formalism, do we discover the reasons for its
successes and failures. One notable failure of the Hilbert-Einstein theory of gravity
was its inability to account for the so-called ‘dark matter’ effect. Not discussed here is
the explanation for the success of the Global Positioning System (GPS) and that the
dynamical equations for the 3-space have cosmological Hubble expansion solutions.

This work is supported by an Australian Research Council Discovery Grant 2005-
2006: Development and Study of a New Theory of Gravity.
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